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Statistics  - Lecture 1 
 
 
 
 
 
 

 

Statistics = Techniques of 
• Collecting 

data • Analysing 
• Drawing conclusions from  

“A mode of thought” 
 will change the way you do science 

 
Getting started 
 
Vocabulary: Response variable, Explanatory Variable 
 
• Which are the response and explanatory variables? 
• Type of explanatory variable 
• Type of response variable 

 
Response Variable  Scatterplot 
Continuous Weight, height, length, 

temperature, concentration 

 

Count (Whole 
numbers, integers) 

Number of individuals, days, 
cells; zero is a common value 

Proportion Percentage mortality, infection 
rate, proportion responding to a 
treatment; percent leaf area 
eaten. 

Explanatory Variable Continuous Weight, height, length, temperature, 
concentration 
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Response Variable  Box-and-whisker-plot 
Continuous Weight, height, length, 

temperature, concentration 

 

Count (Whole 
numbers, integers) 

Number of individuals, days, 
cells; zero is a common value 

Proportion Percentage mortality, infection 
rate, proportion responding to a 
treatment; percent leaf area 
eaten. 

Explanatory Variable Categorical (Factor with levels) Species, Clone, Genotype,Treatment, 
Diet, Growth Chamber, Habitat 
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0
50

0
15

00
25

00

outliers   
1.5 inter-quartile range   

75%   
50%  (Median)   
25%   

1.5 inter-quartile range   
outliers   

A typical box-and-whisker-plot 
=> detect skewness; here: skewed to the left! 
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Normally distributed 

mean=median=0 
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Parameters + variables in models 
 
Model = a way of describing the behaviour of a process in 
order to predict its future or understand its past 
• Words 
• Clay or Wood 
• a mathematical relationship (mostly equations), e.g.        

y = a + b x 
• Statistical models are fitted to data; they are used to 

describe a given set of data 



• response variable ~ explanatory variable(s) 
 

 
A model should be as simple as possible (but no simpler). 

 Minimal adequate model, model simplification 
 Prefer linear to non-linear models 
 as few parameters as possible 
 prefer simple explanations to complex ones 
 factor level reduction (in ANOVA and ANCOVA) 

 
Variables = those elements of the model that are changing 
and whose behaviour is to be predicted by the model; e.g. x, y 
 
Parameters = usually constants in the model, e.g. a, b 

 
y=a + bx => Type of model: two-parameter linear model 
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y = a + bx 
a...intercept 
b...slope (steep, shallow...) 
b = 
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What test to do? 
 
 

Explanatory 
Variable 

Response Variable 
Continuous Count Proportion 

Continuous Regression • square-root 
transformation 
• GLM (Log-linear 
Regression) 

• arcsine 
transformation 
• GLM 
(Logistic 
regression) 

Categorical Student´s t; 
ANOVA 

Contingency Table • arcsine 
transformation 
• GLM 
(Logistic 
analysis of 
deviance) 

Continuous and 
Categorical 

ANCOVA • square-root 
transformation 
• GLM (Poisson 
Errors) 

• arcsine 
transformation 
• GLM 
(Binomial 
Errors) 

Time Time Series Analysis 

 



Experimental Design 
 
Everything varies!  
So finding differences is simply uninteresting 
 
We need techniques to distinguish between interesting & 
uninteresting variation 
 
e.g. “Dolly gets arthritis aged 5”  

 n=1 
 no hypothesis 
 no control (similar but not cloned) 
 no randomization 
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e.g. ion uptake in plants  
=> we see some pattern, but there´s no replication! 
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In order to be certain about an observed pattern,  
we need information about variation in the data 

 

 

The 2 R´s: 
Replication and Randomization! 

Replication 
 to improve reliability 

 

Replicates are independent repeats 

 
How many? Do a pilot study to find out about 

 variance 
 most suitable response variable 
 magnitude of responses to treatment(s) 

 
Two rules of thumb: 

 let n be >5 
 if possible, let n be at least 30 

 



Power Analysis 
 
For a power of 0.8 to detect a significant difference (with 
Type I Error rate of 0.05), we get: 
 
n = 

e)²(differenc
variance8  i.e. we need to know the variability, and the 

size of the difference we want to detect. 
 
so, e.g.,  
difference = 2.0;  
variance 10.0  
=> n=8 (10/4) = 20 
 
Blocking to reduce unexplained variation 
 
SST  

 treatment 
 Block effects 
 unexplained (Error) 

 
Randomization 

 to reduce bias 
In practice: 

 Tables 
 Flip a coin, throw a dice 
 Random number generator 
 number each item ! 
 alternative: stratified sampling; matched pairs 

 
e.g. grow plants in the greenhouse 
group them in  
 
small – medium - large 



 
draw at random from each group and transplant together 
 

Important issues: 

Aim: The unexplained variation should be as small as 
possible!

 
 

 replication 
 randomization 
 controls: no control, no conclusions 
 avoid pseudoreplication 

temporal: repeated measures from the same individual 
spatial: several measurements from the same vicinity 
Look at error degrees of freedom! 
 
e.g. feeding trial with 10 petri dishes 
5 controls, 5 JA-treated 
each 4 leaf pieces (exchanged once) 
 
4 x 2 x 10 = 80 replicates??? No! its´s only 10! 
 
solutions: average it away; separate analyses; time-series 
analysis; mixed-effects models 
 

 measure initial conditions: 
demonstrate that experimental units really were alike at the 
beginning of the experiment! 
use this also to check efficiency of randomization 

 



Types of Experimental Design 
Aim: Interspersion of replicates and treatments! 

„Bad Designs“ 
 no replication 

  
 clumped segregation 

 (totally uninformative) 
  isolative segregation 

 (growth chambers etc) 
  systematic 

 (problem: periodic variations) 
“Good” Designs 
  

      randomized block 
 (matched pairs) 

 completely randomized 
 (if enough time, space, money)

A C D B 
D A B C 
B D C A 
C B A D 

 

Latin Square 
(in case of 2 gradients) 

    
    
    
    

Split-Plot  
very common! 
Lab benches, Greenhouses, 
Petri Dishes, Microarrays 

    
    
    
    

Nested Design 
especially in medicine: liver 
samples from individual mice 

 
Problem: small experiments => symmetrical by chance



Analysing Experimental Data 
 

 Estimate parameters of models 
 Hypothesis testing: Are estimated parameters 

significantly different from one another (from 
theory) ? 

 
Estimates of Central Tendency 
 

(1) Mode: most common value 
(2) Median: splits data (y) into two equal halves 
 
e.g. {3,7,9,11,15} => Median = 9 
e.g. {3,7,9,11,15,18} => Median = 10 
 
(3) Mean: 

n
y

y ∑=  
e.g. aphids on plants 

1 2 3 4 5  
1 10 10 1 1000 => mean=204.4 
 
poor at measuring central tendency! 

 

the arithmetic mean is highly sensitive to outliers! 

Calculator:  
SD mode; DATA entry with “M+” 
“shift 1” gives mean 
 
 

(4) The geometric mean: 
 Log-transform the data: 
 



y 1 10 10 1 1000 
log10 y 0 1 1 0 3 
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(5) The Harmonic Mean 

 
e.g. body size in competition experiments 
Michaelis-Menten and Lineweaver-Burk! 
take the reciprocal of the data and average it 
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Estimation of variability 
 
arithmetic mean, plus 
differences from it 
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 order of measurement 
 
(1) The Range of the data: minimum, maximum 

 increases monotonically with sample size 
 not a good to measure variability 

(2) Differences between y and y  
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 squares of sum The  2∑d  

One of the most important things to remember! 



Problem: SS increases ever and ever 
 
Possible solution: Divide it by n 
But: We need to know y first (i.e. estimate it from the data) 
 
A new concept: Degrees of freedom 
 
Suppose we have n=5 numbers with mean=4 
They´d have to sum up to 20 
 
So let´s fill in some possible numbers: 
 

2 7 4 0 7 
  
Free choice (“freedom”) until we arrive at the last number! 
 
We therefore have n-1 degrees of freedom if we estimated the 
mean from a sample size of n. 

 

D.f. =  the sample size, n, minus  
the number of parameters, p, estimated from the data 

 

Our formula for the variance is therefore: 
 

Variance = 
freedom of Degrees

Squares of Sum  
 
 
 
 

Or, put more mathematically: 
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Statistics – Lecture 2  
 
Assumptions of parametric statistics 
 
...most important 

(1) Random samples 
(2) Constant variance 
(3) Independent errors 
(4) Normal errors 
(5) Additivity  of Treatment effects 

...least important 
 

(1) Random samples: if they´re not: nothing can be done 
to cure this! 

 
(2) Constant variance:  

 

Never compare two means, when the variances are 
significantly different!  

Use Fisher´s  F test to decide (F≈smaller than 4) 
 
Non-constant variance = Heteroscedasticity 
What to do against it? 

 transform the response variable (log, square root...) 
 pick an appropriate error distribution: Generalized 

Linear Models 
 

(3) Independent Errors: Errors must not be correlated 
(pseudoreplication); cure:  

 average it away 
 use a better model: Time series analysis, mixed 

effects models 



Rule of thumb to spot pseudoreplication: Look at the 
Error degrees of freedom; these mustn´t be too large. 
 
 

(4) Normal Errors:  

 

It´s the errors that need to be normally distributed (not 
the data!).  

The errors are often called residuals – after a model has 
been fit to the data 

 
 
(5) Additive Treatment Effects: We usually assume there 

are no interactions between factors; this must be shown 
explicitly. Cure: Transform the response. 

 
e.g. zxay ××=     non-linear, non-additive 

zxay lnlnlnln ++=   linear, additive 
 

 

Never ever test for main effects before you test for 
interaction effects! 

 
Describing Data: The Histogram 
 
Suppose we have counted the number of feeding holes in 22 
leaves; we see: 

 the sample size is 22 
 every leaf has at least one hole 
 the maximum number of holes was 6 



 
y f(y) y×f(y) cum 

f(y) 
cum p(y) percent 

1 5 5 5   5/22=0,23 0-23 
2 10 20 15 15/22=0,68 23-68 
3 3 9 18 18/22=0,82 68-82 
4 2 8 20 20/22=0,91 82-91 
5 1 5 21 21/22=0,95 91-95 
6 1 6 22 22/22=1,00 95-100 
  53)( =×∑ yfy    
 
Calculating the mean from a frequency distribution: 
 

41.2
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A second example (not presented in the lecture) : 
 
y f(y) cum 

f(y) 
cum 
p(y) 

percent

2 21 21 0,32 0-32 
5 3 24 0,36 32-36 
6 22 46 0,70 36-70 
13 15 61 0,92 70-92 
18 5 66 1,00 92-100
 

 n=66 
 min(y)=2 
 median(y)=6 
 mean(y)=7.18 
 max(y)=18 
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The variance: 
 

 
“Sum of Squares” / “Degrees of 
freedom” 
 

Let´s try an example: 
 

• We have measured the height of five plants   
• We want to know the variability in plant height 

 
Plant  Height Deviations,

yyi −  
Deviations² 
( yyi − )² 

465/230 ==y  
 
∑ =− 2)( yy  
250 
 

5.62
4

2502 ===
df
SSs

1 50 50-46=    4 16 
2 49 49-46=    3 9 
3 48 48-46=    2 4 
4 51 51-46=    5 25 
5 32 32-46= -14 196 
∑ y  230    
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How can we make this calculation quicker (avoid all these 
subtractions)? 
 

 Short-cut formula for the sums of squares: 
 

 

Sum of Squares = ∑ ∑−
n
yy )²(²   

 
 

 
Plant  Height Height² SS= ∑−

n
yy )²(²∑  

SS=10830-
5

)²230(  

SS=10830-
5

52900  

SS=10830-10580=250 
 

5.62
4

2502 ===
df
SSs  

1 50 2500 

2 49 2401 

3 48 2304 

4 51 2601 

5 32 1024 

 ∑ =10830²y  y=230∑
 
• We now know that our sample variance was 62.5 
• How do we use this information? 
 
Variance is used for 

 measuring unreliability 
 testing hypotheses 

 
The Standard Deviation 

 
is the square root of the variance: ²ss =  



 
 

The Standard Error  
 

 shall grow when variance grows (i.e. proportional to s²) 
 shall grow when sample size decreases (divide by n) 
 should have the same units as y (take square root) 

 

n
sSEy

²
=  

 
So, with our variance of 62.5, and knowing that n=5, we get; 
 
 

53.35.12
5

5.62
===ySE  

 
We write:  
“The mean plant height was 46±3.5 (1 s.e., n=5)” 
 
Probability Calculations: The Normal Distribution 
 
Consider a simple exponential function 
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y=exp(-z) 
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y=exp(-z²) 

 
This leads us to a very important function, the Normal 
Distribution 

 needs to be scaled, so that the area under the curve from 
minus to plus infinity becomes 1 

 the scaling constants are the mean and the standard 
deviation 

 The Normal Probability Density Function: 
 

²2
)²(

2
1)( σ

μ

πσ
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=
z

ezp  



 
 p(z) is the height on the y axis 
 z is the value on the x axis; large (small) z always means 

infinitely small p(z) (because e-large value approaches 0) 
 μ is the mean; for z=μ : e0=1, p(z)=0.4 
 σ is the standard deviation 
 for μ=0 and σ =1, we get: 
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Which makes our equation much simpler! 
 
This is the Standard Normal Distribution 
 

2
²
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z
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Now let´s draw it; we know, for z=μ=0, p(z) is 0.4: 
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z now becomes –3; -2; -1; 0; 1; 2; 3  standard deviations from 
the mean 



 
Statistics – Lecture  3  
 
Converting a distribution to standard normal form: 
 
Calculate z (a number of standard deviations) 
 

s
yyz −

=  

 
Let´s use our example from Lecture 2: 
 

 Mean plant height was 465/230 ==y  

 The variance was 5.62
4

2502 ===
df
SSs  

 So the standard deviation = ²s =7.9 
 
What is the probability for a plant being smaller than 60 cm? 
 

77.1
9.7

14
9.7
4660

==
−

=z  

 
 Look up the probability (i.e. the area under the standard 

normal distribution) for z=1.77. It is 0.96. 
 I.e., about 96% of our plants will be smaller than 60 cm 
 If we want to know how much will be taller, it will be 1-

0.96=0.04 = 4% 
 
 
The Confidence Interval 
 
Up to now, we´ve done “less than” or “more than” tests, which 
means: one-sided tests. 



Now, we want to do our first two-tailed test. We want to 
estimate how certain we can be about a mean value we have 
estimated from data. 

 

Confidence Interval 
Shows the likely range into which the mean would fall if 
the sampling exercise were to be repeated

 more confidence means the interval becomes wider 
 e.g. we would like to be 99% confident (not 50%) 
 the conficence interval is two-tailed 
 to establish a 95% CI, we need to work out a special 

value for (100%-95%)/2=2.5% 
 for n<30, we use Student´s t from tables to calculate the 

CI 

CI =Student´s t from tables ×standard error 

 
 

n
stCI fd
²

)..,025.0(%95 γα ===  

 
For large samples (n>30), we get 

 

n
sCI ²96.1%95 ×±=  

 
So, let´s take our plants example (n=5) again:  

 The standard error of the mean was 

53.35.12
5

5.62
===ySE  



 we have 5 plants, so there are 4 d.f. 
 t(0.025,4)=±2.77, thus CI=±2.77×3.53=±9.78 
 We could therefore write: 

 
“The mean plant height was 46±3.5 (1 s.e., n=5)” 
“The mean plant height was 46±9.78 (95% C.I.,n=5)” 
 
Hypothesis testing 
 
Karl Popper: “A good hypothesis is a falsifiable hypothesis.” 
 
e.g.  
 
“There is a rat in my 
kitchen”  

“There is no rat in my 
kitchen”  
  
= a good hypothesis: as soon 
as we do see a rat, it will be 
falsified. 

= a bad hypothesis; not 
falsifiable (it could be that I 
always overlook the rat) 

  
 
Alternative Hypothesis (H1): Null hypothesis (H0): 
“Something is happening”
    

“Nothing is happening” 
 

  

We keep H0 until there´s significant proof against it. 



 
Mistakes to be made: 
 

 Type I Error(α ): Reject H0 when there´s nothing going 
on; i.e. we conclude that something is different but in 
fact it isn´t; in biology: α  should be low (two-tailed 
~5%) 

 Type II Error (ß): Accept H0 when in fact there´s 
something going on, i.e. we still believe in “nothing is 
happening” when in fact there is something happening. 
ß is 0.2 (for practical reasons) 

 
The Power of a test: 
The ability to find a significant difference when there really is 
one. 

 

Power = 1-ß = 80% (→Power Analysis, see Lecture 1) 

Hypothesis testing in practice 
 

 There are loads of tests to do (F test, t test etc.) 
 No matter what test we do, the principal is always the 

same: 
 Calculate a test statistic (e.g. z, t, F) 
 Look up the critical value in a table or in the computer 
 compare the calculated value with it 

 

 

 Only if test statistic ≥critical value: reject H0 

 
Student´s t test 
 



 When the explanatory variable is categorical (a factor 
with two levels) 

 and when the response variable is continuous 
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We use t test to find out if the two means for “A” and “B” are 
significantly different at α =0.05 
 
t-Test: 
 
“How many standard errors is our difference?” 
 

t = 
differencethat oferror standard The

meansobetween twdifference The  
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But this only holds as long as A and B are not correlated. 
(If they´re correlated: Paired t-test) 
 
An example: 
 
We have measured the length of rabbit ears (cm) in male and 
female rabbits. 
 
Males (A)  A² Females (B)  B² 
20 400  12 144  
18 324 15 225 
19 361 14 196 
20 400 13 169 
17 289 14 196 
∑ y=94 ∑ ²y =1774 ∑ y ∑ ²y=68 =930 
 
A short-cut formula for the sum of squares: 

 
i.e. we only need to estimate two 
quantities, ∑ ²y  and (∑ y )², from 
the data. 

 
 

Ay =94/5=18.8 By =68/5=13.6 
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nA=5 nB=5 

SE
Ay =

n
s² =

5
7.1 =0.58 SE

By =
n
s² = 51.0

5
3.1
=  

 
Before we start comparing our two samples, we need to find 
out if we are allowed to compare them: 

 

Never compare two means, when their variances are 
(significantly) different! 
 

How to compare two variances? 
 
F-test:  
 

iancelarger varF =
riancesmaller va

 

 
 

 In our case: F=0.58/0.51= 1.14 
 Look up the critical value for F at 

4min == atordenonumerator γγ  (6.38). 
 Our calculated value is smaller, so we conclude that the 

variances are not significantly different 
 



 

Rule of thumb: If F>4, then the variances are significantly 
different. 

 
In our case, we can go on with our analysis and calculate t: 
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Note that  

 our total sample size was nA+nB=10 
 we have estimated two parameters from the data 
 our total d.f.=10-2=8 

 
Now compare this value with value from t tables at α =0.05 
and γ =8: t0.0.25,4=2.30 
 
The value we have just calculated (6.75) is much bigger than 
the one from the t tables; 
 
We conclude: 

 

“Male and female rabbits differ significantly in their ear 
length (t0.025,8=2.30,nA=nB=5, p<0.05)” 

 



Transformation of the Response variable 
 
Why?  
• to deal with non-constant variance (heteroscedasticity) 
• to deal with non-normal error distributions 

 
How? 
(1) Log Transformation 
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Transformation affects the error structure:  
before transformation: Errors log-normally distributed 
after transformation: Errors normally distributed 
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...and after log-transformation ...and after log-transformation
 
 
(2) The Square-root transformation 
 
• Used with count data, where the errors follow a Poisson 

distribution 
• We use 5.0´ += yy  or any other arbitrary constant added 

to y 
 



Fitted : initleaf03 + block + biomass + sowndiv * funcgr + grass * leg
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(3) The Arcsine-Square Root Transformation 
 
• used with proportion data 
• the formula is )(sin´ 1 proportiony −=  
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The arcsine transformation accounts for proportions that are 
bounded between 0 and 1. 
 



Regression 
 
• when both response & explanatory variable are 

continuous 
• graphic: Scatterplot 

 
Different possible models: 
(1) linear 
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(2) non-linear (curved): polynomials 
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Model: e.g. y = a + b x + c x² 

 
(3) multiple explanatory variables 
 

0

5

10

15

1.0 1.5 2.0 2.5 3.0

S S

1.0 1.5 2.0 2.5 3.0

S

S
1.0 1.5 2.0 2.5 3.0

S

0

5

10

15

S

W

M

 
multiple linear regressions with several explanatory variables 
(x,z,...) 
Model: y = a + b x + c z 
 
 



Linear Regression 
 
used for 
• Describing data, e.g. y = 2.2+0.4 x 
• Hypothesis testing: is y really a function of x? 

H0: There is no relationship between x and y 
• Estimation, i.e. slopes and intercepts (a, b) 

unreliability of slopes and intercepts (SEb, SEa) 
• Prediction, e.g. linear interpolation or extrapolation 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Statistics – Lecture 4 
 
Linear Regression (continued) 
 
We are studying a relationship of the form 

 

response variable = intercept + slope * explanatory variable 

 
or, put in mathematical notaion: 

 
y = a + b x  

 
 
A regression analysis consists of two parts: 
 

a) estimate the parameters a, b and their standard errors 
b) find out what fraction of the variation in y is explained by 

the model 
 
Assumptions of Linear regression: 

a) Normal errors 
b) Constant variance 
c) The explanatory variable is fixed and measured without 

error 
d) All unexplained variation is confined to the response 

variable 



0 2 4 6 8

2
4

6
8

10
12

tannin

gr
ow

th
data points

 
 
This is how regression works: 
- We define the best fit line as passing through ),( yx  
- we then rotate the line, until we find the sum of the 
individual departures: 

 )²(²∑ ∑ −=
∧
yyd  to reach a minimum 

 
 
The minimum is found by the so-called maximum likelihood 
technique: 
• given the data, and 
• having selected a particular model: 
• What values of the parameters 
• make the data most likely? 

 
This means: The data are fixed, and the values for each of the 
parameters are changed until the data are most likely. 
 



 

Likelihood is the product of the probability densities for 
each of the values of the response variable, y. 
Many likelihood functions involve the product sign: 
 
L(a,b)= ),(1 bayfn

i i∏ =  
 

 
Estimation of the slope 
 
We now want to find the maximum likelihood estimate of the 
slope b. 

 

The maximum likelihood estimate of the slope is the value 

of b for which )²(²∑ ∑ −=
∧
yyd  reaches a minimum. 

 
 rotate the line around ),( yx , until the error 

sums of squares is minimised. 
 The error sums of squares is the sum of 

squares of the individual departures between 
the data and the predicted values: 

SSE= 2)(∑ −
∧
yy  
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This means, we want to find the value of b for which SSE is 
minimal. We write: 
 

SSE=  2)(∑ −
∧
yy

bxay +=
∧

 
 
SSE = ∑  We want to find the minimum of SSE: −− 2)( bxay
 
SSE = minimum  ∑ −− 2)( bxay
 
So we form the first derivative: 
 

∑ ∑ −−−=−−−= ²2)(2 bxaxxybxayx
db

dSSE  

 



0²
!

∑ ∑ ∑ =−−= bxaxxy
db

dSSE  

 
we know that  
(1) =a  ∑ax ∑ x

(2) 
n
xb

n
yaxbya ∑−∑=→−=  

So we can conclude 
 

0²∑ ∑ ∑ =−− bxaxxy  

0²∑ ∑ =−∑ ⎟
⎠
⎞

⎜
⎝
⎛ ∑−∑− xbx

n
xb

n
yxy  

 

0²)²(
=∑−∑ ⎟

⎠
⎞

⎜
⎝
⎛ ∑−∑∑− xb

n
xb

n
yxxy  

 
now take all terms involving b on one side: 
 

∑+∑=∑∑−∑ ²)²( xb
n
xb

n
yxxy  divide by ∑ ∑−

n
xx )²(²  

 

b

n
xx

n
yxxy
=

∑
∑−

∑∑−∑

)²(²
 which is exactly 

SSX
SSXYb =  

 

All statistics in regression are done withe the so-called 
"famous five": 

∑ x  
∑ ²x  
∑ y  



∑ ²y  
yx∑  

 
 
Estimation of the intercept 
 

Knowing that the slope is 
SSX

SSXYb = , we can calculate the 

intercept using 

x
SSX

SSXYyxbyaxbay −=−=→+=  

 

x
SSX

SSXYya −=  

 
 
How good is the fit of our regression line to the data? 
 
We need to calculate 

(1) The total sum of squares in the usual way (SST) 
(2) The corrected sum of squares for x (SSX) 
(3) A measure of covariation in x and y (SSXY) 
(4) The regression sums of squares (SSR) 

 
These are calculated as 
 

∑
∑−=

n
yySSY )²(²  

∑
∑−=

n
xxSSX )²(²  

∑
∑∑−=
n

yxxySSXY )(  

 
The regression sum of squares is just  



SSR= )²( yy −∑
∧

 ; it can also be computed as SSXYb× : 
 

∑
∑∑−

∑
∑−

∑∑−∑

n
yxxy

n
xx

n
yxxy )(

)²(²
 

 
To sum up, we now know: 
 

SSX
SSXYb =  

 

x
SSX

SSXYya −=  

 
With an easy dataset, this gives: 
 
x y x² y² xy 
0 6 0 36 0 
4 9 16 81 36 
8 10 64 100 80 
12 11 144 121 132 
24 36 224 338 248 
∑ x   y     ∑ ²x ∑ ²y   yx∑ ;    6;9 == xy  ∑
 

∑
∑−=

n
yySSY )²(² =338- 14

4
²36
=  b=SSXY/SSX= 

32/80=0.4 

∑
∑−=

n
xxSSX )²(² =224- 80

4
²24
= xbya −=  

a=9-0.4×6=6.6 

∑
∑∑−=
n

yxxySSXY )( =248- 32
4

3624
=

×   

 



So our regression equation would be 
 

y=6.6+0.4x  
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It looks like all the data lie close to our regression line, i.e. 
there is good fit between observed and predicted values.  
 
How can we proof this mathematically? 
 
(1) SST= SSY = )²(∑ − yy  

(2) SSE = =)²(∑ −
∧
yy ∑ −− )²( bxay  

(3) SSR = SST-SSE 
 
SSR = b SSXY = 0.4 = 12.8 32×
SST = SSY = 14 
SSE= SST-SSR=14-12.8= 1.2 
 



The r² value is SSR/SST; in our case, it is 12.8/14=0.91. 
91% of our data are explained by the regression line. 
 
ANOVA table for regression 
 
Take SST and partition it into SSR (explained) and SSE 
(unexplained) variation. Compare the resulting variances using 
F tests: 
 
 
Source SS df MS 

(variances) 
F 

Regression SSR 1 MSR= 
SSR/1=SSR 

MSR/MSE

Error SSE n-2 MSE=s²= 
SSE/n-2 

 

Total SST n-1   
 
 
Degree of freedom calculations: 
SST= )²− y(∑ y  1 parameter 

SSE= =∑)−
∧
y ²(∑ y −− )²( bxay 2 parameters (a and b) 

SSR= SST-SSE number of extra parameters 
from the null model (y= y , 1 
parameter ) to the full model 
(y=a+bx; 2 parameters) 

 
 
Source SS df MS 

(variances) 
F(df=1,2) 

Regression 12.8 1 MSR=12.8 
 

12.8/0.6=21.3

Error 1.2 4-2=2 s²=0.6  



Total 14 4-1=3   
 
The so-called residual standard error is 775.06.0 =  
 
 
All we need now is the standard errors for slope and intercept: 

 
y=6.6+0.4x  

 

SEb= SSX
s² = 086.0

80
6.0
=  

 

SSXn
xs

×
∑ ²²SEa= = 648.0

804
2246.0

=
×
×

∧
y

 

 
"The slope was 0.4±0.08 (1 s.e., n=4)" 
"The intercept was 6.6±0.65 (1 s.e., n=4)" 
 
So we´re now ready to draw the observed and the predicted 
values: 
 
x y  Residuals, y-

∧
y  

0 6 6.6+0.4×0=6.6 -0.6 
4 9 6.6+0.4×4=8.2 0.8 
8 10 6.6+0.4×8=9.8 0.2 
12 11 6.6+0.4×12=11.4 -0.4 
 
 
 
A typical call to a software program would yield the following 
output: 
 



 
 
 
 
 
 
 
 
 
 
 

 
The model diagnostic plots would then look like: 
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lm(formula = y ~ x)
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Analysis of Variance Table 
 
Response: y 
          Df Sum Sq Mean Sq F value  Pr(>F)   
x          1   12.8    12.8  21.333 0.04382 * 
Residuals  2    1.2     0.6                   
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1 
 

Call: 
lm(formula = (y ~ x)) 
 
Residuals: 
   1    2    3    4  
-0.6  0.8  0.2 -0.4  
 
Coefficients: 
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   6.6000     0.6481  10.184   0.0095 ** 
x             0.4000     0.0866   4.619   0.0438 *  
--- 
Signif. codes:  0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1  
 
Residual standard error: 0.7746 on 2 degrees of freedom 
Multiple R-Squared: 0.9143,     Adjusted R-squared: 0.8714  
 



Regression and ANOVA are identical approaches except 
for the nature of the explanatory variables. 
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Now:  
Analysis of Variance 
• response variable: continuous 
• explanatory variable: categorical! 
• Null Hypothesis: All group means are the same. 

 

 
E.g. Light intensity "low"-"medium"-"high" could also be 
expressed as 500 lx; 1,000 lx; 10,000 lx 

 

Given the choice between ANOVA and regression: 
Always do regression. Regression and ANOVA can be 
combined to give analysis of covariance (ANCOVA). 

Assumptions: 
• random sampling 
• equal variances 



• independence of errors 
• normal distribution of errors 
• additivity of treatment effects 

 
Model: 
y= a + bx1 + cx2 + ...  
 
Let´s stick to the simplest case: one factor with two levels 
y= a + b x1 + c x2    

 

! The factor levels enter the equation as if they were 
separate explanatory variables, x1 and x2 

code the explanatory variables:  
x1:=1 for A and 0 for B 
x2:=0 for A and 1 for B 
 

bacbayA +=×+×+= 01  for the first level of the factor 
cacbayB +=×+×+= 10  for the second level. 

 
a is the overall mean 
b is a difference between the overall mean and Ay  
c is a difference between the overall mean and By  

 

-In Regression, "a" is the intercept and the other 
parameter is a slope. 
-In ANOVA, "a" is the overall mean and the other 
parameters are differences between means 

 



 
The individual observations xij can be written as 
 
xij=µ + αi + εij   [i=1,...,a; j=1,...,n; εij = Ν(0,σ²) 

 
Example: 
Suppose we had  n=14 observations in 2 groups (i.e. 7 
observations per group). 
 
ANOVA works like this: 
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The individual datapoints the overall mean, y  
SST= )²(∑  − yy

Every observed value is the sum of 
(1) an overall mean µ 
(2) a treatment or class deviation and 
(3) a random element from a normally distributed 
population with mean 0 and standard deviation σ 
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the group means, BA yy ,  
SSE= )²()²( BBAA yyyy −∑+−∑

Difference between overall 
mean and group means: 

SSA=SST-SSE= )²( yy −∑
∧

 
 
Now, a typical ANOVA table looks like this: 
 
k is the number of factor levels 
n is the number of replicates  
 
Source SS df MS F Critical F 
Treatment SSA k-1 

1−
=

k
SSAMSA

²s
MSA

F =
from tables 
(α =0.05; df= 
{k-1;k(n-1)} 

Error SSE k(n-1) 
)1(

²
−

=
nk
SSEs

  

Total SST kn-1    
 

F test = 
classes within MS
classesbetween MS

squaremean Error 
squaremean  Treatments

=  

 
 



A complex Three-way factorial ANOVA: 
 
-There are three factors, A, B and C, each with a,b and c levels 
-We are interested in interactions and main effects.  

 

Never test for main effects before you test for interaction 
effects! 

This is how it goes: 
- calculate SSA,SSB,SSC 
- calculate a so-called correction factor, CF 
- Calculate the two-way interactions SSAB,SSAC,SSBC 
- Calculate the three-way interaction SSABC 
- Calculate SSE and SST 
 

CF=
abcn

y)²(∑  SSAB= CFSSBSSA
n
Q

−−−
²∑  

SSA= CF
bcn

A
−∑ ²  SSAC= CFSSCSSA

n
Q

−−−∑ ²  

SSB= CF
acn

B
−∑ ²  SSBC= CFSSCSSB

n
Q

−−−∑ ²  

SSC= CF
abn

C
−∑ ²   

 

SSAB= CFSSBCSSACSSABSSCSSBSSA
n
T

−−−−−−−∑ ²  

 
SSE=SST-SSA-SSB-SSC-SSAB-SSAC-SSBC-SSABC 
 
And the ANOVA table, then, looks like this: 
 
 
 



Source SS df MS F 
Factor A SSA a-1 SSA/(a-1) MSA/s²
Factor B SSB b-1 (...) (...) 
Factor C SSC c-1   
Interaction A:B SSAB (a-1)(b-1)   
Interaction A:C SSAC (a-1)(c-1)   
Interaction B:C SSBC (b-1)(c-1)   
Interaction 
A:B:C 

SSABC (a-1)(b-1)(c-
1) 

  

Error SSE abc(n-1) s²=
)1( −nabc

SSE   

Total SST abcn-1   
 
 
 



Statistics, Lecture 5 
 
Analysis of Covariance 
 
Why do we do it? 
(1) To increase precision in randomized experiments. 
Knowledge on initial conditions can be (and has to be!) 
included. 
 
(2) To adjust for sources of bias in observational studies. E.g. 
include tree age as a covariate in a study on tree growth 
 
Generally: ANCOVA is one of the most widely applicable 
techniques and can be extended using other modeling 
approaches (mixed effects models, generalized linear models 
etc). 
 
Response Variable: Continuous  
Explanatory Variables: both categorical and continuous  
 
Model: 
e.g.  1 categorical variable, sex 
 1 continuous variable: age 
 response variable:  weight 
 
Start with the most complex model 
 
a) y=a+bx (males) 
b) y=c+dx (females) 
 
so in sum we have a 4-parameter model 
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Model formulae: 
 
Regression: y=a+bx 
ANOVA: y=a+bx+cz 
 
Analysis of Covariance:  
 
weight = a+b sex + c age + d sex:age 
 
a is an intercept 
b is a difference between two intercepts 
c is a slope 
d is a difference between slopes 



 
sex:age is an interaction between a continuous and a 
categorical variable 
 
What, if sex had three levels: 
male, female, hermaphrodite? 
 
y = a + b hermaphrodite + c male + d age +  
e age:hermaphrodite + f age:male 
 
a is an intercept 
b is a difference between intercepts 
c is a difference between intercepts 
d is a slope 
e is a difference between slopes 
f is a difference between slopes 
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How does ANCOVA work? 



 
split the total sums of squares, SST into 
 
a) SSR (explained by continuous variable = a slope) 
b) SSA (explained by categorical variable) 
c) SSAR (Differences in slopes = an interaction term) 
d) SSE the unexplained variation 
 
A typical ANOVA table for ANCOVA: 
 
Source    
 
Intercept for Factor A 
Differences between intercepts 
overall slope for continuous variable (the regression part) 
Differences between slopes 
 
I.e. we fit a regression line for every level of the factor(s) 
 
Contrasts 
 
planned comparisons (a priori): part of the design 
unplanned comparisons (a posteriori): after you´ve seen the 
analysis 
 
Contrast coefficients: 
To test hypotheses related to levels of factors in experiments 
e.g.  
the ANOVA table says "Genotypes are significantly different" 
we now want to know which Genotypes differ from which 
 
How to do it? 
(1) contrasted groups get opposite signs 
(2) grouped means get the same sign 



(3) the sum of the contrast coefficients, γδ =0 
 
First step: All treatments, compared with the control 
 
Factor level steps 1+2 step3 resulting 

coefficient 
A - 1 -1 
B - 1 -1 
C - 1 -1 
D + 4 4 
E - 1 -1 
 
 
Further steps: Compare other subgroups 
 
Note: 
There is a large number of possible contrasts, but there are 
only k-1 orthogonal contrasts (where k is the number of 
treatments) 
 
e.g. a factor with 5 levels a,b,c,d,e 
 
possible contrasts could be 
 
ab a(b+c) a(b+c+d) 
ac a(b+d) a/c+d+e) 
ad a(b+e) a(b+c+de) 
ae (...) (...) 
 
but there are only 4 orthogonal contrasts! I.e., those which 
have not been done (implicitly) already. 
 
e.g. ab, ac: "bc" is already done implicitly. 
 



So here comes an orthogonal contrast matrix: 
 
 a b c d e 
α  -1 -1 -1 4 -1 
β  1 1 -1 0 -1 
γ  0 0 1 0 -1 
δ  -1 1 0 0 0 
 

α ,β and so on are the  comparisons we want to make. 
 
in ANOVA: How to use contrasts? 
 
SSA is the sum of the sums of squares of the k-1 orthogonal 
contrasts 
 
up to now, we´ve split up SST in SSA and SSE 
 
now, we further split up SSA into k-1 orthogonal contrasts 
 
Unplanned comparisons 
 
Since there are loads of contrasts, if you do enough of them, 
you will find some false positives (by chance alone) 
 
With multiple comparisons, we need to use a lower α value 
than usual (Bonferroni correction) 
 
new α=old α/m (where m is the number of comparisons 
made) 
 
e.g. 10 comparisons, new α is then 0.005 
 
 



A new class of models: 
 
Generalized linear models 
 
Up to now, we had continuous response variables with 
 

- constant variance 
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New kinds of response variables: 
 
(1) Count data. 
 
e.g. Lesions on a leaf; parasites in a host 



- lots of zeros 
- all values are integer 

 
The variance will not be constant; the variability of a 
count increases with the mean! 

 
 
 
 
 

A random count process is always a Poisson process. 
 
We are studying a Poisson process, where the variance equals 
the mean. 
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If the variance: mean ratio is 1, the count data are randomly 
distributed. 

 

Poisson processes show: 
non-constant variance 
non-normal errors 
non additivity of treatment effects 

(2) Proportion Data 
 
a) count proportions 
 
The number of individuals that did one thing 



and the number of individuals that did not do this thing 
 
b) non-count proportions (e.g. percentage cover estimates) 
 
bounded above and below (0-1) 
 
E.g. "Percentage growth" or "Percentage increase"  
23%, 41%, 12% 
 
That´s not a good idea! Loss of information (2 numbers turned 
into one number) 
 
Better:  response variable=final mass, 

initial mass = a covariate! 
 
For real count proportions, we have: 
 
e.g. deaths (dead or alive) 
parasitology (infected or uninfected) 
sex ration studies (number of males / females) 
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I.e. we have  
- non-constant variance 
- binomial errors 
 
Generalized Linear Models 
 
3 new things: 
(1) The linear predictor 
(2) The link function 
(3) The Error structure 
 
(1) Linear Predictor 
 
so far, in  
regression, we had   y=a+bx 
multiple regression:  y=a+bx+cz 
 

in general, one can say y= )
1

log(
µ

µ
−

=η  

 
∑ βx  is the linear predictor 

 

The number of rows in a linear predictor equals the number of 
parameters. 

Generalized linear models are linear in the parameters; this 
means, also non-linear relationships can be modelled. 
 
e.g. y=a+bx+cx² 
 
x²:=z and hence y=a+bx-xz 
 
(2) The Link function 



 

η is the linear predictor: ∑= βη x  
 
up to now: y = a+bx = η  
 
new: y=f(η ); f(η ) is the reciprocal of the link function. 
 
Canonical Link functions 
 
The Link function for a Normal process is identity, y=η  
The Link function for a Poisson process is log; y=exp(η ) 
The Link function for a Gamma process is the reciprocal 
The Link function for a Binomial process is logit 
 

logit: 
p

p
−

=
1

log(η ) 

 
(3) The Error structure 
 
The components of the response variable have distributions 
that belong to the exponential distribution family 
 
 
How to specify GLM´s? 
 

- for normal data: use the Normal family with the identity 
link 
- for count data: use the Poisson family with the log link 
- for proportion data: use the Binomial family with the logit 
link 
-Link functions and variance functions can also be used 
independently 



e.g. we see that taking the square root makes our regression a 
straight line, and constant variance is achieved by taking logs 
 
data transformation wouldn´t work 
 
so we use a generalized linear model with 
a) a square root link and 
b) the variance proportional to the square of the mean 
 
Outlook 1: Mixed effects models 
 
random effects: things we can´t control (random variation, e.g. 
blocks in an experiment) 
 
fixed effects: things we have applied (i.e. we know what 
we´ve done), e.g. treatments 
 
Mixed effects models account for 
- temporal autocorrelation 
- spatial autocorrelation 
- variance patterns (variance functions) 
- correlated errors (correlation structure) 
 
i.e. a good thing to try out! 
 
Outlook 2: Generalized linear mixed effects models 
 
- Still a controversial thing 
- only offered in a few software programs such as SAS or R 
- fit by so-called penalized quasi-likelihood or marginal quasi-
likelihood 
- use with caution. 
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